
Sanskrit
And

Computational Linguistics
Select papers presented

in
the ‘Sanskrit and the IT World’ Section

at
the 16th World Sanskrit Conference

(28 June – 2 July 2015)
Sanskrit Studies Center,

Silpakorn University, Bangkok, Thailand

Editor
Amba Kulkarni

Pragun Publication
A D K Publishers Distributors Enterprise



First Published: 2015

©SSC, Silpakorn University

ISBN: 978-93-80397-58-0

Published by
Pragun Publication
(A D K Publishers Distributors Enterprise)
4224/1, Ansari Road, Daryaganj, New Delhi-110002, India
Ph: 011-41562573-77 Fax: 011-41562578
E-mail: pragun@dkpd.com
www.dkpd.com, www.pragunpublication.com

Printed at:
D K Fine Art Press P Ltd.
A-6, Nimri Colony, Ashok Vihar, Phase-IV
Delhi-110052, India



Contents

Preface v

Contributors ix

What’s Pāṇini got to do with it?
The use of gaṇa-headers from the Aṣṭādhyāyī in Sanskrit
literature from the perspective of corpus linguistics 1

Oliver Hellwig and Wiebke Petersen

Analysis and graphical representation of Navya-
Nyāya expressions - Nyāyacitradīpikā 21

Arjuna S. R. and Amba Kulkarni

Sanskrit signs and Pāṇinian scripts 53

Gérard Huet

An XML formalization of the Aṣṭādhyāyī 77

Peter M. Scharf

Some issues in formalizing the Aṣṭādhyāyī 103

Tanuja Ajotikar, Anuja Ajotikar and Peter M. Scharf

Character encoding for computational Aṣṭādhyāyī 125

Samir J. Sohoni and Malhar A. Kulkarni

iii



iv

Generation of derivative nouns by simulating Pāṇini 157

Amrith Krishna and Pawan Goyal

Prakriyāpradarśinī - an open source subanta generator 195

Dhaval Patel and Shivakumari Katuri

Classification of Natural Language instructions
inspired from Mīmāṃsā 223

Bama Srinivasan and Ranjani Parthasarathy

Anusāraka dependency schema from Pāṇinian per-
spective 243

Akshar Bharati, Sukhada, Dipti M. Sharma and Soma Paul



An XML formalization of the Aṣṭādhyāyī
Peter M. Scharf

Abstract: The present paper describes the structure of the XML formal-
ization of Pāṇini’s Aṣṭādhyāyī I have been constructing over the past
two years so that it may be utilized by software engineers to produce
a computational implementation of Pāṇini’s grammar. The computa-
tional implementation will produce a comprehensive lexicon of San-
skrit from the basic elements listed in the Dhātupāṭha, Gaṇapāṭha,
and the affixes provided in rules of the Aṣṭādhyāyī. The lexicon will
contain not only the semantics and derivation of every form produced
but also its immediate relations in a dependency hierarchy. The Pāṇi-
nian lexicon such a computational implementation produces will serve
as the core of a lexical table that coordinates headwords of numerous
lexical resources in the Sanskrit Library’s integrated dictionary. The
lexicon will also prove useful in the development of Sanskrit parsing
software by constraining homophonous speech forms and providing
relation marking. Systematic computational surveys of the resulting
lexicon may contribute to building a semantic network for Sanskrit
and may provide useful insights to contemporary formal linguistics.

Keywords: Pāṇini, Aṣṭādhyāyī, XML, computational implementation

1 Introduction
Besides being a fascinating cultural expression of the fourth century bc,
Pāṇini’s Aṣṭādhyāyī contains detailed, specific information about the se-
mantics, syntax, and lexicography of Sanskrit. Much of this information
has been included in comprehensive Sanskrit lexica and descriptive gram-
mars. Yet what has been included is not available in a computationally
accessible form, nor has a thoroughly systematic and formal analysis been
undertaken and made accessible for computational linguistic purposes. In

77



78 P. Scharf

addition, the grammar employs methods of description that have inspired
modern generative grammar and continue to be of interest in that field.
The efficacy and scope of many of the techniques used in the grammar have
been the subject of investigation and debate by Indian linguists for millen-
nia and modern scholars for decades. Yet these methods and techniques
remain to be tested systematically. Information regarding the semantics,
syntax, and lexicography Pāṇini describes remains incomplete, and debates
regarding the techniques he used remain unresolved because of the extensive
detail and complication involved. In order to conduct a thorough systematic
analysis of the semantics, syntax, and lexicography of Sanskrit described by
Pāṇini and to test the techniques utilized by him, it is necessary to model
his grammar formally and implement it computationally.

Recent years have witnessed several projects that have implemented sec-
tions of Pāṇini’s Aṣṭādhyāyī computationally or have begun the development
of a complete implementation. Since these projects and the most pertinent
discussions were just surveyed by Scharf, Goyal, et al. (2015: 165–70), a
discussion of them will not be repeated here. A successful computational
implementation of Pāṇinian grammar requires thorough knowledge of San-
skrit and the tradition of commentary on the intricate system of grammar
founded by the Indian linguist as well as adequate expertise in computer
science to employ suitable methods to model the linguistic system. Since
the combination of expertise required is difficult to locate in a single in-
dividual, collaboration is demanded. Similarly, in order to build a digital
Sanskrit library replete with computational analytic tools, several of my col-
leagues in the Sanskrit Computational Linguistics Consortium have found
it productive to collaborate by distributing tasks to those with the requisite
specialized skills and coordinating our results. The late Malcolm Hyman
and I took a similar collaborative approach in early implementations that
model Pāṇinian sandhi, declension, conjugation, and participle stem deriva-
tion. While my background in analytic philosophy and computer science is
sufficient to enable me to communicate with computer scientists and formal
and computational linguists, my expertise is in Sanskrit and Indian linguis-
tics. Hence, I wrote rules in an XML framework using regular expressions
and he wrote Perl software to convert the XML to executable code.

The XML framework and data-structure I describe below were devel-
oped over the past two years in frequent consultation with Ralph Bunker,
a computer scientist who is developing a computational implementation of



An XML formalization of the Aṣṭādhyāyī 79

the framework, and build upon the structures employed in the implementa-
tion of voice determination described by Scharf, Goyal, et al. (2015). The
framework itself, however, is meant to be independent of the computational
software that implements it. Hence my description is independent of any
particular computer language. I do not purport to explain Pāṇinian tech-
niques of linguistic description or derivational procedures here. Nor do I
attempt to justify the formalization by reference to Pāṇinian metarules or
an explanation of Pāṇinian techniques. To do so would take far too much
space. Rather I provide a description of the structure of the formalization
of Pāṇinian rules and techniques in XML so that computer scientists may
understand how to employ the formalization in an implementation of the
Aṣṭādhyāyī and so that others who have a prior understanding of Pāṇinian
techniques, whether they be Pāṇinian scholars or linguists, may understand
how the formalization adequately represents the linguistic system it claims
to represent. A companion paper to this one (T. Ajotikar, A. Ajotikar, and
Scharf 2015) does explain some Pāṇinian techniques and illustrate how our
formalization captures them in a number of cases. Other papers, such as
Scharf (2014, 2015), consider individual major problems in Pāṇinian proce-
dure brought to light by the attempt to formalize them. The present paper,
in contrast, explains how the formalization captures the general sweep of
Pāṇinian linguistic description: the representation of strings analyzed into
components introduced under semantic and cooccurrence conditions which
are subject to combination, replacement, deletion, and augmentation under
additional semantic, cooccurrence, and phonetic conditions.

2 Components of the grammar
Pāṇini’s grammar consists of several components besides the Aṣṭādhyāyī. As
shown in Figure 1, these include lists of phonological and lexical elements
as well as rules and metarules. Our model of Pāṇinian grammar likewise
consists of several components. These include the following elements:

1. A derivational data structure.
2. A set of rules that operates on the data structure.
3. A set of functions each of which conducts an operation common to

some rules.
4. A set of input tables of basic elements.



80 P. Scharf

Figure 1
Components of Pāṇini’s grammar

5. A set of produced tables of derived elements.
6. A set of display mechanisms.

All components of our grammar utilize the Sanskrit Library Phonetic basic
(ASCII) encoding scheme whose basic segments are shown in Table 1 and
which is described in full by Scharf and Hyman (2011: 151–58). The input
tables consist of basic elements that are read but not altered by rules or
functions. These include phonetic and lexical tables as well as a database of
the Aṣṭādhyāyī. Besides the Akṣarasamāmnāya, the phonetic tables include
a list of sounds, a table of sounds associated with phonetic properties, and
a table of pratyāhāras and their expansions. Lexical tables include XML
editions of the Mādhavīyadhātuvrt̥ti (Scharf 2009), a list of additional roots
mentioned in sūtras (sautradhātus), and the Gaṇapāṭha. Scharf (2013) de-



An XML formalization of the Aṣṭādhyāyī 81

Table 1
Basic Segments

A a
a

A;a ā
A

I i
i

IR ī
I

o u
u

� ū
U

� r̥
f

� r̥̄
F

� l ̥
x

� l ̥̄
X

O; e
e

Oe; ai
E

A;ea o
o

A;Ea au
O

k, k
k

K,a kh
K

g,a g
g

;G,a gh
G

.z, ṅ
N

..c,a c
c

C, ch
C

.j,a j
j

J,a jh
J

V,a ñ
Y

f, ṭ
w

F, ṭh
W

.q, ḍ
q

Q, ḍh
Q

:N,a ṇ
R

L, ḷ
L

\h, ḷh
|

t,a t
t

T,a th
T

d, d
d

;D,a dh
D

n,a n
n

:p,a p
p

:P, ph
P

b,a b
b

B,a bh
B

m,a m
m

y,a y
y

.=, r
r

l, l
l

v,a v
v

Z,a ś
S

:S,a ṣ
z

.s,a s
s

h, h
h

H ḥ
H

^ ẖ
Z

^ h�
V

M ṁ
M



82 P. Scharf

scribed the database of the Aṣṭādhyāyī used. While rules of the Aṣṭādhyāyī
themselves, such as rules that identify markers, rules to determine the pada
of a root, and rules that condition the augment i, determine much of the
information in the database of the Aṣṭādhyāyī and in the lexical tables, they
do not determine the phonetic characteristic of the basic lexical items them-
selves or their specific markers. Nor are rules of the Aṣṭādhyāyī themselves
sufficient to classify the various basic elements introduced or referred to in
the text. Even affixes, despite the heading pratyaya, are not definitively
distinguishable from other sounds by machine-usable criteria.

In contrast to the input tables, the produced tables contain tables of
sounds with their features, pratyāhāras, and tables of affixes reconstituted
using rules of the Aṣṭādhyāyī. Produced tables also include tables of name-
value pairs, collections of the semantic conditions for affixes referred to as
conditions for the introduction of other affixes, and collections of semantic
conditions for the introduction of taddhita affixes. Produced tables include
derived nominal bases (prātipadika), feminine stems, and derived verbal
stems utilized in subsequent derivation, and tables of final derived words
(pada) with their derivational histories. Display mechanisms include dictio-
naries of roots, nominal bases, stems, and words; and interactive research
and educational tools.

3 Phonetics
Although the Aṣṭādhyāyī contains a number of rules that classify sounds and
construct abbreviatory terms, and is accompanied by the akṣarasamāmnā-
ya,1 subsequent rules rely on more information than is explicitly provided.
Pāṇini’s rules rely upon knowledge of the properties of sounds that the
Aṣṭādhyāyī itself does not exhaustively instruct; it merely introduces certain
terms used for a number of useful properties and classifies sounds based upon
known phonetic features. The formalization therefore employs an additional
table of sounds associated with phonetic properties to provide the missing
information. Table 2 shows a small snippet of our table of sounds associated
with phonetic properties. Our table is not minimal; it includes as attributes
of each sound all of the sound properties necessary to uniquely identify
that sound. In Pāṇini’s system some of these properties are derivable and

1Petersen (2004, 2008, 2009) has recently analyzed the Akṣarasamāmnāya and (2010)
pratyāhāras.



An XML formalization of the Aṣṭādhyāyī 83

<phone>
<Sabda>a</Sabda>
<slp1>a/</slp1>
<sTAna>kaRWya</sTAna>
<AByantara>vivfta</AByantara>
<Goza>Gozavat</Goza>
<prARa>alpaprARa</prARa>
<AnunAsikya>ananunAsika</AnunAsikya>
<AyAma>hrasva</AyAma>
<svara>udAtta</svara>

</phone>

Table 2
XML table of sounds and their properties

some are dispensable. For example, the sound ́a in our table includes the
phonetic features hrasva ‘short’ and udātta ‘high-pitched’ even though A.
1.2.27 provides that the sound á is termed hrasva, and A. 1.2.29 that it
is termed udātta. Likewise our table includes the phonetic features ghoṣa-
vat ‘voiced’ and alpaprāṇa ‘unaspirated’ even though Pāṇini does not rely
upon the voicing and aspiration properties of vowels because he uses classes
designated by abbreviatory terms formed from the Sivasūtras (pratyāhāras)
to limit sound selection instead. Yet no Pāṇinian rule tells us that the
sound a is kaṇṭhya ‘velar’ and vivrt̥a ‘open’. Nor do rules that distinguish
conditions necessary for a sound to qualify to be termed hrasva, udātta
and ananunāsika ‘unnasalized’ explain to us that the sound a is associated
with such conditions as the time of a short u, high tone (uccais), and lack
of accompaniment by the nose. But the Aṣṭādhyāyī assumes and requires
such knowledge for the proper application of its phonetic classificatory rules
such as A. 1.2.27 ūkālo ’j jhrasvadīrghaplutaḥ, A. 1.2.29 uccair udāttaḥ,
and A. 1.1.8 mukhanāsikāvacano ’nunāsikaḥ to distribute phonetic terms
regarding the features of length, pitch and nasality properly. To formalize
these phonetic classificatory rules strictly, we would have to depend upon
some independent data source for this information in any case in order to
provide sufficient conditions for these rules. Instead, we provide a simple
phonetic properties table that associates each sound with a list of phonetic
properties sufficient to uniquely identify each sound, let Pāṇini’s rules draw
from it the distinctions they need, and regenerate tables of sounds with
their properties in the form in which subsequent rules depend upon them.



84 P. Scharf

Hence, for example, since A. 1.1.2 adeṅ guṇaḥ provides that the sounds a,
e, and o are termed guṇa, our formalization of this rule adds the attribute
bala="guRa" to the list of attributes associated with these sounds.

Let’s consider a more complicated example concerned with creating the
conditions that allow rules to recognize sounds as homorganic (savarṇa)
with each other. A dozen rules explicitly rely on this feature while numerous
others rely upon it to determine replacements that are featurally closest. A.
1.1.9 tulyāsyaprayatnaṁ savarṇam states that each sound that has the same
internal effort (ābhyantaraprayatna) at the same place of articulation (sthā-
na) belongs to the same class (varṇa), and A. 1.1.10 nājjhalau disallows
vowels (ac) and consonants (hal) from belonging to the same class. Our
formalization of these rules endows each sound with a varRa attribute based
upon its association with sTAna and AByantaraprayatna attributes in the
phonetic properties input table and additionally based upon its inclusion
among the sounds that match one of the regular expression macros @(ac)
or @(hal) that formalize pratyāhāras. The first div element in the following
snippet of the formalization of A. 1.1.9 endows the velar stops k, kh, g, gh,
and ṅ, with the attribute varRa="kaRWya.spfzwa":

<div>
<uddeSya sTAna="kaRWya" AByantaraprayatna=

"spfzwa"/>
<AdeSa varRa="kaRWya.spfzwa"/>

</div>
…
<div>
<uddeSya sTAna="kaRWya" AByantaraprayatna=

"vivfta"/>
<AdeSa varRa="kaRWya.vivfta"/>

</div>

In exception to the second div element in the above snippet, the first div
in the following snippet of the formalization of A. 1.1.10 endows the vowel a
with the attribute varRa="kaRWya.vivfta.ac", and the second div endows
the consonant h with the attribute varRa="kaRWya.vivfta.hal":



An XML formalization of the Aṣṭādhyāyī 85

<div>
<uddeSya sTAna="kaRWya" AByantaraprayatna=

"vivfta" phone="^[@(ac)]$">
<or>
<attribute not="yes" sTAna="tAlavya"/>
<attribute not="yes" sTAna="ozWya"/>

</or>
</uddeSya>
<AdeSa varRa="kaRWya.vivfta.ac"/>

</div>
…
<div>
<uddeSya sTAna="kaRWya" AByantaraprayatna=

"vivfta" phone="^[@(hal)]$"/>
<AdeSa varRa="kaRWya.vivfta.hal"/>

</div>

The two attribute elements in the first div prevent it from endowing the
diphthongs e, o, ai, and au with the attribute varRa="kaRWya.vivfta.ac".
Table 3 shows a snippet of the XML table that results from these and other
phonetic classification rules. The table permits accessing the sounds that
correspond to other sounds due to featural similarities.

Just as phonetic classification rules rely on knowledge of phonetic fea-
tures not taught in the Aṣṭādhyāyī, rules that produce pratyāhāras rely upon
the prior existence of some of them. The pratyāhāra hal is required to iden-
tify final markers in the Akṣarasamāmnāya before A. 1.1.71 ādir antyena
sahetā can apply to form any pratyāhāra. While commentators offer clever
interpretations that avoid circularity, we deem rather that this type of cir-
cularity was not an issue for the early grammarians. They considered that
speech was abiding (nitya), and, as long as rules reconstitute speech forms,
an axiomatic, sequential application is not strictly required.



86 P. Scharf

<cells>
<cell row='kaRWya' col='spfzwa1'>k

<attribute varRa="kaRWya.spfzwa" Goza="aGoza" prARa="alpaprARa"/>
</cell>
<cell row='kaRWya' col='spfzwa2'>K

<attribute varRa="kaRWya.spfzwa" Goza="aGoza" prARa="mahAprARa"/>
</cell>
…
<cell row='kaRWya' col='Uzman'>h

<attribute varRa="kaRWya.vivfta.hal"/>
</cell>
<cell row='kaRWya' col='hrasva'>a

<attribute varRa="kaRWya.vivfta.ac" AyAma="hrasva"/>
</cell>
…
<cell row='kaRWya' col='guRa'>a

<attribute varRa="kaRWya.vivfta.ac" bala="guRa"/>
</cell>
…

</cells>

Table 3
Enriched XML sound classification table



An XML formalization of the Aṣṭādhyāyī 87

4 The derivational data structure
The derivational data structure consists of one or more cooccurring streams,
one of which is the main stream. Each stream consists of a sequence of states.
Each state consists of a phonetic string and a list of attributes. Both streams
and states can be given names that can be used to refer to them during the
evaluation of a rule. Each attribute consists of a class, a value, and has a
range consisting of an offset and length which generally associates it with
a substring of the phonetic string. Attributes whose ranges do not point
to a substring of the phone, are pending such association. An attribute
can also have a property list which contains name-value pairs. A property
value can either be a string, the identifier of an attribute, or an array of
strings and attributes. The identifier of an attribute is its position in the
list of attributes of a state. This identifier remains constant for the lifetime
of the attribute in the stream. Figure 2 shows a sketch of a rule and its
corresponding data structure in the default main stream.

<rule n="sUtra number" s="sUtra" type="sUtra type">
<element phone="abc"/>
<element attribute="value"/>
<element attribute="value" phone="abc"/>
<element attribute="value[property=pvalue]"

phone="abc"/>
…

</rule>

phone=abc
0 1 a-attribute
0 3 abc-attribute

Figure 2
Sketch of a rule and data structure

5 Rules
Rules are composed in an XML file which conforms to a DTD and a schema.
While the DTD is sufficiently general to permit the file of rules to be vali-
dated against it by general XML validation software, the schema is exten-
sively detailed and requires validation software written specifically for this



88 P. Scharf

purpose. Figure 3 shows the structure of the rules file. The root element
of the file rules.xml is the element grammar which has as its children the
elements constants and rules. The latter has as its children one rule ele-
ment for each sūtra of the Aṣṭādhyāyī. Complex rules may have subdivisions
in div elements. Each rule organizes a set of regular expressions and at-
tributes into a tree consisting of XML elements. XML elements may contain
a phone attribute that refers to a subsegment of the phonetic string in the
data structure, and attributes of that subsegment.

<grammar>
<constants>

<constant name="constantName" value="sUtraNumber"/>
…

</constants>
<rules>

<rule n="A1.1.1" s="vfdDirAdEc" type="saYjYA">
<uddeSya phone="(?:A|[@(Ec)])" flags="g"/>
<AdeSa bala="vfdDi"/>

</rule>
…
<rule n="A1.1.1" s="vfdDirAdEc" type="saYjYA">
<conditionElement/>
…
<actionElement/>

</rule>
<rule n="sUtraNumber" s="sUtra" type="sUtraType">
<div>
…
</div>
…

</rule>
…

</rules>
</grammar>

Figure 3
XML rules file structure

XML elements are of two major classes: condition elements and action
elements. Action elements include the following: AdeSa, atideSa, call
and their children; all the rest are condition elements. Condition elements
evaluate the current state of the main stream unless reference is explicitly



An XML formalization of the Aṣṭādhyāyī 89

made to another prior state or another stream. Condition elements may
also evaluate possible subsequent states of the main stream by utilizing a
try element. Building upon the look-ahead mechanism described by Scharf
(2010), a try element instructs the derivation engine to create a hypothetical
stream, to proceed with the derivation in that stream, to evaluate a condition
in a particular subsequent state of that stream, and either to keep or discard
the stream based upon that evaluation. The action element AdeSa affects
the current state of the main stream; it may affect other streams only to the
extent of copying constituents of them into the main stream and discarding
them. An atideSa element replaces a phonetic string or attribute with
another for the duration of specific rules designated in the scope element.
A call element invokes another rule.

5.1 Element types
There are three types of elements:

1. normal elements
2. attributive elements
3. logical elements

The relation of the child element to its parent is determined by its type.
Normal elements define substrings of the range of the phone of their parent.
Attributive elements define additional attributes of their parent. Attributive
elements house attributes that properly belong to the parent but cannot be
put in the parent element due to limits of XML (no two attributes of the
same name can occur in a single element), or to organizational motivations
(attributes of a certain type may be classed together by limiting them to a
specific element, e.g. attributes that define semantic conditions all appear in
an arTa element). Attributive elements include the following: attribute,
arTa, and cooccur. The last refers to an attribute of its parent that points
to a cooccurring stream and describes a string in that steam. Logical el-
ements include the elements and, or, and not, which represent Boolean
operators. Logical elements, which may house any combination of normal
and attributive elements, pass the characteristics of their children on to their
parent. All other elements are normal elements.

Every rule must contain a source element (uddeSya or sTAnin). The
range of the source element(s) determine the range to which the action



90 P. Scharf

elements apply. Most rules have exactly one source element as does for
example the formalization of A. 1.1.1 in Figure 3. No rule can contain
both an uddeSya and a sTAnin, but some rules may contain two sTAnin
elements. The rules that require two substituends are those that occur
under the heading A. 6.1.84 ekaḥ pūrvaparayoḥ which states that a single
replacement occurs in place of two successive substituends, a preceding one
and a following one. If a rule contains two sTAnin elements, one will be the
child of a pUrva element, the other a child of a para element, and the pUrva
and para elements must define contiguous ranges.

Figure 4 shows the formalization of the first single-replacement oper-
ational rule. A. 6.1.87 ād guṇaḥ (aci) provides that a single guṇa vowel
occurs in place of a vowel of the class a and a following vowel. In Figure
4 the pUrva element describes the preceding string and the para element
describes the succeeding string. The regular expression that is a value of the
phone attribute in the sTAnin element in the former describes a vowel of
class a and the sTAnin element in the latter describes any vowel. The fact
that the sTAnin elements are children of the pUrva and para elements indi-
cates that they describe substrings of the strings described by their parent
elements. The locus attributes in the sTAnin elements fix those substrings
at the end and beginning of those parent strings.

<rule n="A6.1.87" s="AdguRaH" type="viDi">
<pUrva phone="^[@(al)]*([@(a)])">

<sTAnin phone="[@(a)]" locus="anta"/>
</pUrva>
<para phone="([@(ac)])[@(al)]*$">

<sTAnin phone="[@(ac)]" locus="Adi"/>
</para>
<AdeSa execute="guRa(para.sTAnin.phone)"

saYjYA="antAdi"/>
</rule>

Figure 4
XML formalization of A. 6.1.87

A. 6.1.85, articulates a principle followed in the section headed by A.
6.1.84: a single replacement behaves as if it is both the end of the preced-
ing speech unit and the beginning of the succeeding speech unit. In the
formalization, the presence of the attribute saYjYA="antAdi" in the AdeSa
element instructs the implementing software not only to replace both the



An XML formalization of the Aṣṭādhyāyī 91

substring defined by the sTAnin element that is a child of the pUrva element
and the sTAnin element that is a child of the para element together (not
each of them individually) with one single replacement, but also to adjust
the ranges of all the units that contain either the preceding sound or the
following sound to contain the replacement. The ranges of those containing
elements will thus overlap.

5.2 Element order
Elements in rules are ordered in such a way that previous elements describe
ranges of the root phone to the left of subsequent elements; subsequent el-
ements describe ranges to the right of previous elements. A sequence of
sibling elements describes a sequence of ranges in the range of their parent
element. The range of each sibling is not necessarily contiguous with the pre-
ceding and subsequent sibling. If a sibling contains an n attribute or locus
attribute its range is constrained within its domain. As shown in Figure 4,
the attribute-value pair locus="Adi" constrains the range of the element
to the left boundary of the domain of its parent element, and the attribute-
value pair locus="anta" constrains the range of the element to the right
boundary of the domain of its parent element. An n attribute whose value
is an integer sequential with the integer value of a preceding element con-
strains the range of the element to have the range of the preceding element
as its left context; otherwise, if an element does not have an n attribute, it
does not have to be contiguous with the preceding element. Two elements
are constrained to the immediate context of the source element. The range
of a pUrva element serves as the immediate left context of the domain of
a subsequent element. The range of a para element is the immediate right
context of the domain of a preceding element. If an element contains the
attribute type=overlapping, its domain overlaps the range of a preceding
sibling. The overlapping segment is defined by the range of the required
attribute saYjYA=antAdi. Hence the left boundary of the element with the
attribute type=overlapping is the offset of the attribute saYjYA=antAdi.
These attributes are used, for example, in the formalization of A. 6.1.103
tasmāc śaso naḥ puṁsi which provides that a replacement takes place im-
mediately following the long vowel that is the single replacement provided
by A. 6.1.102. The attributes are necessary to identify the particular long
vowel provided by A. 6.1.102 rather than any long vowel in the string.



92 P. Scharf

5.3 Regular expressions
A regular expression applies to a particular state in a particular stream in the
derivational data structure specified by stream, state, and other attributes
in the element in which it occurs; the default is the current state of the main
stream. Regular expressions are utilized in the phone attribute and in the
values of properties. The domain to which a regular expression in the value
of a property applies is the value of a property in a particular class, in a
particular attribute. The domain to which a regular expression in a phone
attribute applies is the range of the phone. The attributes and phones in
elements higher in the rule tree define a range that limits the domain of the
phone to which the attributes and phones in lower elements in the tree apply.
The domain of a regular expression in a phone attribute in an element that
is the immediate child of a rule element is the root phonetic string.

The order of application of attributes is different for condition elements
and action elements. In condition elements, the attributes that accompany
the phone attribute in an element are applied first to limit the range in
which the regular expression in that phone applies. In action elements, the
regular expression in a phone attribute or the reference expression in a range
attribute applies first to locate the range to which other attributes apply.
Reference to regular expressions in an action element must be unambiguous;
an action element cannot operate on phones that match different parts of
the current string.

The domain to which a regular expression in the phone attribute of a
condition element applies is determined by its parent element and by the
other attributes in which the phone attribute occurs. If there are no other
attributes, the range of the phone is the range of the parent element. If
there are other attributes, the range of those attributes must fall within the
range of the parent. The range of the phone is the range defined by the
other attributes.

From the regular expressions in phone attributes of elements with
contiguous ranges, a single regular expression is built. The right end
of the regular expression of the preceding sibling meets the left end of
the regular expression of the succeeding sibling. If siblings are not con-
strained to be contiguous, .*, which permits any number of characters
to intervene, is inserted between them. Source elements within those
elements determine groups within that regular expression. For exam-
ple, in the formalization of A. 6.1.87 in Figure 4 the regular expression



An XML formalization of the Aṣṭādhyāyī 93

^[@(al)]*([@(a)][@(ac)])[@(al)]*$ is formed from the two regular ex-
pressions ^[@(al)]*([@(a)]) and ([@(ac)])[@(al)]*$ in the pUrva and
para elements respectively. The two groups indicated in these two regu-
lar expressions are combined in a single group in the constructed regular
expression in accordance with the single replacement principle.

If a rule is meant to apply more than once to substrings identified by reg-
ular expressions within a parent string, the attribute-value pair flags="g"
accompanies the phone attribute which will have a regular expression ab-
sent the caret and dollar sign that anchor it at the left and right, e.g. in
the uddeSya element in Figure 3. If the domain of a regular expression is
not anchored at the left boundary of the domain of its parent or in the root
domain, it should be checked repeatedly beginning at each character within
the domain defined by its parent and left sibling until a match is found. A
caret at the beginning of a regular expression and dollar sign at the end
anchor the bounds of the string to be sought at the beginning and end of
its range as defined by its parent or other attributes.

If a search fails to match with ranges defined by the first match for
attributes of elements, again the attempt to match should continue with
subsequent matches of those attributes until the search domain is exhausted.
Once a match is found the rule is not repeated unless the attribute value
pair flags="g" accompanies the phone attribute. We indicate greedy or
non-greedy in regular expressions. A ‘?’ indicates non-greedy. Our regular
expressions do not employ nested groups.

The name of the range of a regular expression is the path from the
rule element to the phone attribute whose value is the regular expression.
(E.g. rule.avayavin.sTAnin.phone; an abbreviated name dropping the
rule element is used in rules.xml: avayavin.sTAnin.phone.)

5.4 Cooccurrence conditions
A cooccur element describes a string in a stream other than the stream in
which it occurs. The string it describes has a syntactic relation with the
string described by the parent element of which the cooccur is the child.
The attribute-value pairs saYjYA="upapada" and saYjYA="upasarga" in a
cooccur element specify that the syntactic relation of the string described by
the cooccur element with its parent element is a subordinate dependency
relation. In the absence of one of these pairs, the dependency relation is
undefined. A string described by a cooccur must have an attribute set



94 P. Scharf

in the initial conditions that tells what it is a cooccur of, i.e. to what it
bears a relation. The relatum is indicated by the attribute value pair r="x",
‘related to x’, where x is the identifier of an attribute created previously in
the initial conditions.

Figure 5 shows the formalization of a typical rule requiring a cooccur
element. A. 3.2.1 karmaṇy aṇ provides that the affix aṇ occurs after a
verbal root (dhātu) on the condition that an agent is to be denoted and a
direct object (karman) occurs as a subordinate term (upapada) connected
with it. The fact that the subordinate term denotes a participant in ac-
tion is indicated in the formalization by making the cooccur element a
child of the pUrva element which is supplied with the attribute-value pair
saYjYA="DAtu". That the particular participant is a direct object, i.e. the
kāraka termed karman, is indicated by supplying the cooccur element with
an arTa element with the attribute-value pair kAraka="karman".

<rule n="A3.2.1" s="karmaRyaR" type="viDi">
<pUrva saYjYA="DAtu">

<cooccur saYjYA="upapada">
<arTa kAraka="karman"/>

</cooccur>
</pUrva>
<AdeSa saYjYA="pratyaya[slp=aR]"/>

</rule>

Figure 5
The XML formalization of A. 3.2.1

5.5 Logic
All elements and conditions are cumulative, i.e. connected by a logical
‘and’ unless the elements appear as siblings that are immediate children
of an or element. An and element groups cumulative conditions beneath
an or element. The not="yes" attribute-value pair in an attribute ele-
ment negates the other attributes within the same element. The not="yes"
attribute-value pair in an and element that houses elements x and y means
‘it is not the case that x and y’, i.e. ¬(x&y). An exclamation point before
a property in a property list indicates the absence of that property, e.g. in
A. 1.3.4 !bare refers to a basic element not already stripped of its markers.



An XML formalization of the Aṣṭādhyāyī 95

Elements that appear as siblings that are immediate children of an or
element in AdeSa or atideSa elements indicate the alternate application of
each. Their significance is the same as if two independent rules, each of
which had just one of those siblings, applied alternatively. For example, A.
3.1.133 ṇvultr̥cau provides that the affixes ṇvul and tr̥c occur alternatively
in the sense of an agent (kartr̥) after any verbal root (dhātu). The rule
mentions the two affixes in a dvandva compound yet certainly does not
intend that both affixes apply after a root at once. The XML formalization
of the rule mentions each affix in the form in which it is originally taught
in the sūtra as the value of the upadeSa property of the pratyaya value of
the saYjYA attribute in an AdeSa element. To indicate that they alternate,
the two AdeSa elements are made siblings of an or element.

5.6 Numbering and referencing
Rules are numbered Aa.p.s, where a is an integer from 1–8, p an integer from
1–4, s an integer from 1–223. An integer (currently only 1–4) in an optional
set of square brackets immediately following a rule number refers to the div
number in an n attribute within a rule element. For example, A3.1.74[1]
indicates the div numbered with the attribute-value pair n="1" under A.
3.1.74. The elements cooccur, avayava, and scope are likewise numbered
by n attributes and referenced by a digit in square brackets immediately after
the element name in a path. Paths are indicated by element, attribute,
value, property, and property value names separated by a period. The
formalization of rules that indicate the semantic conditions under which ta-
ddhita affixes are provided provide the paths to elements that house these
conditions. For example, A. 4.1.92 states that certain affixes occur in the
sense of an offspring (apatya). The formalization indicates the semantic
condition by putting apatya as the value of the attribute santati of an
arTa element. Since the meaning belongs to the nominal base of the second
word mentioned in the sūtra, the arTa element is situated in an avayava
element in the second cooccur stream as follows:

<cooccur stream="2">
<avayava saYjYA="prAtipadika" locus="Adi">

<arTa santati="apatya"/>
</avayava>

</cooccur>



96 P. Scharf

The path of the semantic condition passed to the rules that provide affixes
in this meaning is cooccur[2].avayava.arTa. other.

The numbering of div, avayava, and cooccur elements constrains their
order. The order of div elements indicates the sequence of their implemen-
tation. The order of avayava elements indicates the uninterrupted sequence
of occurrence in the phonetic string of the segments they describe.

The values of attributes are hierarchical. Subordinate values are indi-
cated after a period. Values without specified subordinate values include
any subordinate value as well as no subordinate value. An asterisk indicates
any value.

6 Rule processing
The rules of the Aṣṭādhyāyī do not produce speech forms out of nothing;
rules apply when their conditions are met. These conditions must be pre-
sented before any operations can apply. Hence our XML formalization pre-
sumes that a set of initial conditions is supplied. Initial conditions include
both strings and attributes. Strings introduced initially consist of basic ele-
ments selected from the dhātupāṭha or gaṇapāṭha, and attributes introduced
initially include semantic conditions and syntactic relations. Products de-
rived by previous cycles of the implementation, consisting of datasets of
strings and their attributes, may be introduced in subsequent initial con-
ditions. For example, the set of krt̥-derivates, each with its attributes ac-
cumulated in the course of its derivation, may supply some of the initial
conditions for taddhita rules. Subsequent rules and actions inherit the state
produced by the preceding rule or preceding action within the same rule.
The attributes and phones in the data do not have to be passed as param-
eters.

Attributes may be introduced in the initial conditions either with a spe-
cific range or with a pending range (* *). An attribute that is pending is
captured by a string that is introduced in an action element when the ac-
tion element contains an attribute vAcya whose value is the class and value
of the attribute, e.g. vAcya="kAraka=kartf". Attributes are inherited by
their replacements. So are markers, which are properties. Phonetic feature
properties such as accent, nasalization, etc., however, are not inherited.

Attributes in the rule, div, or AdeSa elements (the last occurring only
within a case element) indicate rule dynamics by referring to the number of



An XML formalization of the Aṣṭādhyāyī 97

the rule or div element (see §5.6) that is the target of the specified rule re-
lation. Rule relations are indicated by the attributes apodita, pratizidDa,
niyata, and SezaTo. The values of an apodita attribute indicate those
rules to which this rule is an exception. The values of a pratizidDa at-
tribute indicate those rules to which this rule is a negation. The values of
a niyata attribute indicate those rules to which this rule is a restriction.
Lastly, the values of a SezaTo attribute indicate those rules to which this
rule serves as a remainder. The remainder rule functions with respect to the
listed rules as an otherwise condition in a case statement does with respect
to the preceding cases. Exceptions and negations apply instead of the rules
of which they are exceptions or negations.

Restrictions apply in tandem with the rules they restrict. For exam-
ple, A. 1.4.99–102 laḥ parasmaipadam etc. classify verbal terminations (tiṅ)
according to their pada, person, and number by designating them by the
terms parasmaipada and ātmanepada, prathama etc., and ekavacana etc.
These classificatory rules can be applied prior to processing any particular
initial conditions. Rules such as A. 3.2.123 vartamāne laṭ, which provides
the affix laṭ after a verbal root if the action denoted by that root takes place
in present time, introduce an abstract l-affix endowed with specific markers.
A. 1.3.12–93 anudāttaṅita ātmanepadam etc., A. 1.4.105–108 yuṣmady upa-
pade …madhyamaḥ etc., and A. 1.4.21–22 bahuṣu bahuvacanam etc. provide
restrictions to the pada, person, and number of the verbal terminations
to be introduced as replacements for the l-affix by A. 3.4.78 tiptasjhi …i-
ḍvahimahiṅ. In the XML formalization, the restriction is indicated by the
presence of the attribute-value pair niyata="A3.4.78" in the rule element
of each of these rules. Each restrictive rule that applies adds to the data
(see §4) an attribute whose range is the l-affix provided by rules such as A.
3.2.123. When the l is replaced by A. 3.4.78, the verbal termination with
the corresponding attributes is selected.

Rules that restrict the selection of nominal terminations work similarly
in tandem with the rule that provides them generally. In contrast to restric-
tions to the rule that introduces verbal terminations which are provided as
replacement for an abstract l-affix to which restrictive attributes can be
attached however, Pāṇini has not employed any such abstract nominal ter-
mination to which the restrictive attributes vibhakti and number of nominal
terminations can be attached. Hence, in order to handle the restrictions
in a similar fashion, in the XML formalization, the restricted rule A. 4.1.2



98 P. Scharf

svaujas …ṅyossup is divided into two divs. The first, A. 4.1.2[1], adds a
zero-length place-holder before the restrictive rules apply. The restrictive
rules associate attributes with the zero-length place-holder after which A.
4.1.2[2] selects the corresponding nominal termination.

7 An example
Space does not permit showing the complete derivation of a form in full.
However, let us sketch a couple of phases in the simple derivation of the past
passive participle stem krt̥a. At least a couple of initial semantic conditions
are required. They are selected from a menu, and corresponding attribute-
value pairs are introduced in the main stream of the data:

1. * * phala=karaṇa
2. * * kāla=bhūta

The first indicates the basic sense of the root, and the second indicates
the time of the action denoted by the root. The range of the attributes
is indicated as pending (see §6). Of the two roots that have the sense of
karaṇa in Scharf’s (2009) canonical edition of the Mādhavīyadhatuvr̥tti, we
select the root ḍukr̥ñ. After root selection, the phonetic string of the root is
introduced, and the initial semantic attributes Pala and kAla are associated
with it by fixing their ranges to the offset and length of the phonetic string of
the root. Skipping the steps of stripping the markers from the verbal root
and interpreting its root accent described by Scharf (2009: Introduction
§IIIA2, §IIIA3a), which in any case can be performed tangentially to any
particular derivation, we arrive at the following state, with changes made
by rules shown in grey:

1. phone=kf
2. 0 2 Pala=karaRa
3. 0 2 kAla=BUta
4. 0 2 saYjYA=DAtu[slp=qukf\Y, upadeSa=qukfY, bare=kf,

svara=anudAtta]
5. 0 2 it=qu
6. 0 2 it=Y



An XML formalization of the Aṣṭādhyāyī 99

We illustrate just one rule: A. 6.1.161 dhātoḥ (anta udāttaḥ 159), which
replaces the final vowel of a root by a high-pitched vowel. The rule is
formalized as follows:

<rule n="A6.1.162" s="DAtoH" type="viDi">
<avayavin saYjYA="DAtu" phone=

"^[@(al)]*([@(ac)])[@(hal)]*$">
<sTAnin range="\1"/>

</avayavin>
<AdeSa svara="udAtta"/>

</rule>

The rule processor finds an attribute DAtu in the attribute list, applies the
regular expression in the phone attribute of the avayavin element to the
string demarcated by the range of that attribute, and writes the attribute-
value pair svara=udAtta with the range of the group referenced by the
sTAnin element at the bottom of the attribute list. The resulting data
state, with changes made by the rule shown in grey, is as follows:

1. phone=kf
2. 0 2 Pala=karaRa
3. 0 2 kAla=BUta
4. 0 2 saYjYA=DAtu[slp=qukf\Y, upadeSa=qukfY, bare=kf,

svara=anudAtta]
5. 0 2 it=qu
6. 0 2 it=Y
7. 1 1 svara=udAtta

8 Conclusion
Speakers of a language understand word-sense correspondences and distinc-
tions. Descriptive grammars and lexicons describe these relationships ca-
sually. Contemporary linguists formalize these relationships through tech-
niques such as generative and transformational grammars. Pāṇini likewise
formalized these relationships in his generative grammar. By introducing
the appropriate affixes under specific conditions Pāṇini formally associates
the speech form with its meaning. Our systematic computational imple-
mentation of the Aṣṭādhyāyī makes Pāṇini’s formal word-sense associations
available in the form of a lexicon and for use in a parser.



100 P. Scharf

The author is currently working with Ralph Bunker to implement the
XML grammar described here in Java. Once implemented, we expect that
it will be able to assist in investigating difficult issues regarding Pāṇinian
methodology. For example, it may be employed as a benchmark against
which to test such issues as theoretical differences regarding rule formulation
and automated rule selection. The comprehensive lexicon produced from the
implementation may provide data to assist in determining the relationship
between the linguistic description inherent in the Aṣṭādhyāyī and various
texts, genres, and dialects. This in turn may assist in dating and locating
texts.



References
Ajotikar, Tanuja, Anuja Ajotikar, and Peter M. Scharf. 2015. “Some issues

in the computational implementation of the Aṣṭādhyāyī.” In: Sanskrit
and Computational Linguistics: Proceedings of the ‘Sanskrit and the IT
World’ section of 16th World Sanskrit Conference. 16th World Sanskrit
Conference. (Sanskrit Studies Centre, Silpakorn University, Bangkok,
June 28–July 2, 2015). Ed. by Amba Kulkarni. New Delhi: D. K. Pub-
lishers.

Jha, Girish Nath, ed. 2010. Sanskrit computational linguistics: 4th Inter-
national Symposium, New Delhi, India, December 2010, Proceedings.
(Dec. 10–12, 2010). Lecture Notes in Artificial Intelligence 6465. Berlin;
Heidelberg: Springer-Verlag.

Petersen, Wiebke. 2004. “A Mathematical Analysis of Panini’s Siva-Sutras.”
Journal of logic, language and information 13.4: 471–89.

—. 2008. “Zur Minimalität von Pāṇinis Śivasūtras: eine Untersuchung mit
Methoden der formalen Begriffsanalyse.” Ph.D. dissertation. Düsseldorf.

—. 2009. “On the Construction of Śivasūtra-Alphabets.” In: Sanskrit com-
putational linguistics: third international symposium, Hyderabad, In-
dia, January 2009, proceedings. Ed. by Amba Kulkarni and Gérard
Huet. Lecture Notes in Artificial Intelligence 5406. Berlin; Heidelberg:
Springer-Verlag, pp. 79–98.

—. 2010. “On the generalizability of Panini’s pratyahara-technique to other
languages.” In: Sanskrit computational linguistics: 4th International Sym-
posium, New Delhi, India, December 2010, Proceedings. (Dec. 10–12,
2010). Ed. by Girish Nath Jha. Lecture Notes in Artificial Intelligence
6465. Berlin; Heidelberg: Springer-Verlag, pp. 21–38.

Scharf, Peter M. 2009. Mādhavīya Dhātuvr�tti canonical index. Providence:
The Sanskrit Library. url: http://sanskritlibrary.org.

—. 2010. “Rule-blocking and forward-looking conditions in the computa-
tional modeling of Pāṇinian derivation.” In: Sanskrit computational lin-
guistics: 4th International Symposium, New Delhi, India, December
2010, Proceedings. (Dec. 10–12, 2010). Ed. by Girish Nath Jha. Lecture
Notes in Artificial Intelligence 6465. Berlin; Heidelberg: Springer-Verlag.

101



102 16th WSC:SCL

Scharf, Peter M. 2013. “An analytic database of the Aṣṭādhyāyī.” In: Pro-
ceedings of the Fifth International Sanskrit Computational Linguistics
Symposium. (IIT Bombay, Mumbai, Jan. 4–6, 2013). Ed. by Malhar
Kulkarni and Chaitali Dangarikar. New Delhi: D. K. Printworld.

—. 2014. “Are taddhita affixes provided after prātipadikas or padas?” In:
Pāṇini and the Pāṇinīyas of the 16th–17th century C.E., trosième atelier
du projet ANR PP16-17. (Institut Français de Pondichéry, Pondicherry,
Oct. 14–16, 2014). Paper presented at the Troisième Atelier du Projet
ANR PP16–17 (Pāṇini et les Pāṇinéens des XVIe–XVIIe siècles) accueilli
par EFEO, IFP, EPHE, Pondichéry, 14–16 octobre 2014. In preparation.

—. 2015. “On the status of nominal terminations in aluk and upapada com-
pounds.” In: Proceedings of the Vyākaraṇa section of 16th World Sanskrit
Conference. 16th World Sanskrit Conference. (Sanskrit Studies Centre,
Silpakorn University, Bangkok, June 28–July 2, 2015). New Delhi: D. K.
Printworld.

Scharf, Peter M., Pawan Goyal, Anuja Ajotikar, and Tanuja Ajotikar. 2015.
“Voice, preverb, and transitivity restrictions in Sanskrit verb use.” In:
Sanskrit syntax: Selected papers presented at the seminar on Sanskrit syn-
tax and discourse structures, 13-15 June 2013, Université Paris Diderot,
with a bibliography of recent research by Hans Henrich Hock. Ed. by Pe-
ter M. Scharf. New Delhi: D. K. Printworld; Providence: The Sanskrit
Library, pp. 157–201.

Scharf, Peter M. and Malcolm D. Hyman. 2011. Linguistic issues in encoding
Sanskrit. Delhi: Motilal Banarsidass.


